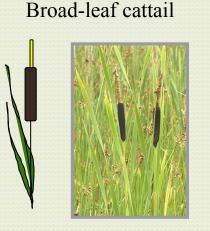
#### Cryptic Cattail Invasions in North American Wetlands: Impacts to Biodiversity

Steven E. Travis, Department of Biology, University of New England, Biddeford, ME Joy E. Marburger, National Park Service, Great Lakes Research and Education Center, Porter, IN



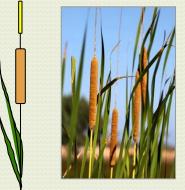


# Once members of mixed species assemblages, many cattail stands now form dense monocultures




#### Cattail monocultures as novel ecosystems

- High primary productivity
- High litter accumulation, soil organic matter content, and soluble nutrients (Tuchman et al. 2009)
- Reduced soil surface light and temperature (Larkin et al. 2012)
- Elevated sediment microbial community diversity (Angeloni et al. 2006)
- Reduced insect herbivore abundance (Penko and Pratt (1987)
- Elevated bird abundance (Smith-Cartwright et al. 2011)


#### Why have cattails become invasive?

- Altered hydrology (e.g., Wilcox et al. 1985)
- Eutrophication (e.g., Woo and Zedler 2002)
- Hybridization (Travis et al. 2010)



Typha latifolia

Southern cattail



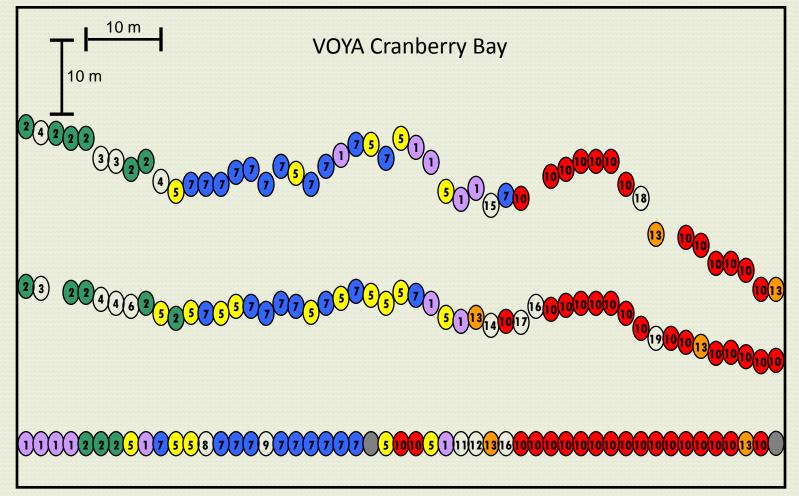
Typha domingensis

Narrow-leaf cattail



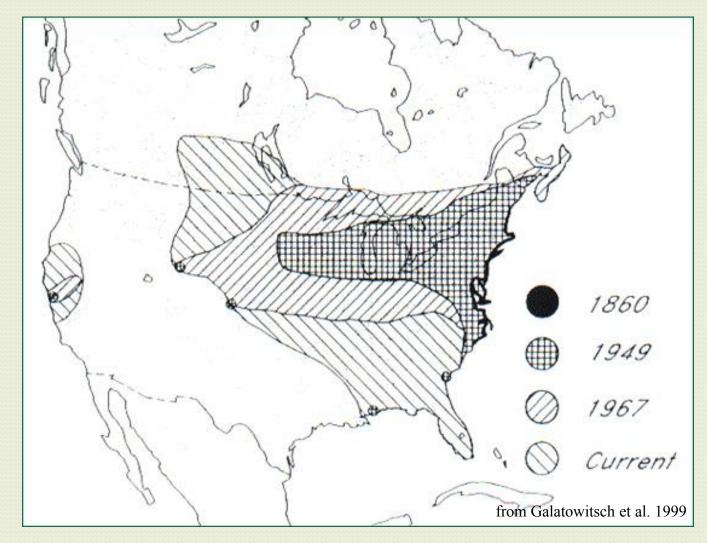
Typha angustifolia

Hybrid cattail




Typha x glauca

### Hybrid cattail: Typha x glauca

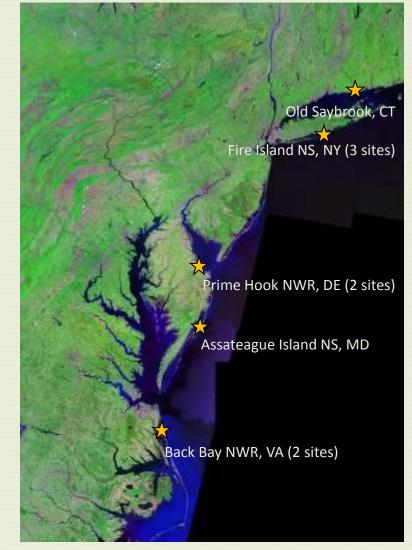



# Cattail monocultures dominated by hybrids show the importance of vigorous clonal growth to invasiveness

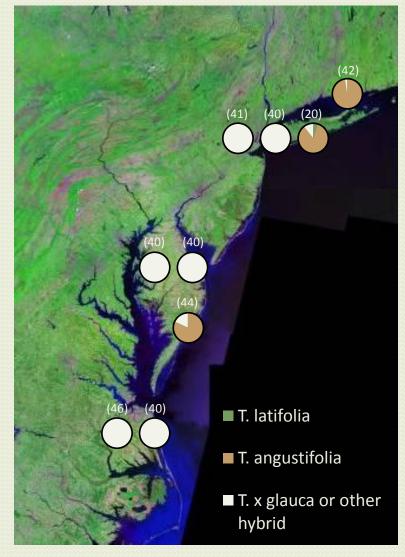


from Travis et al. 2011

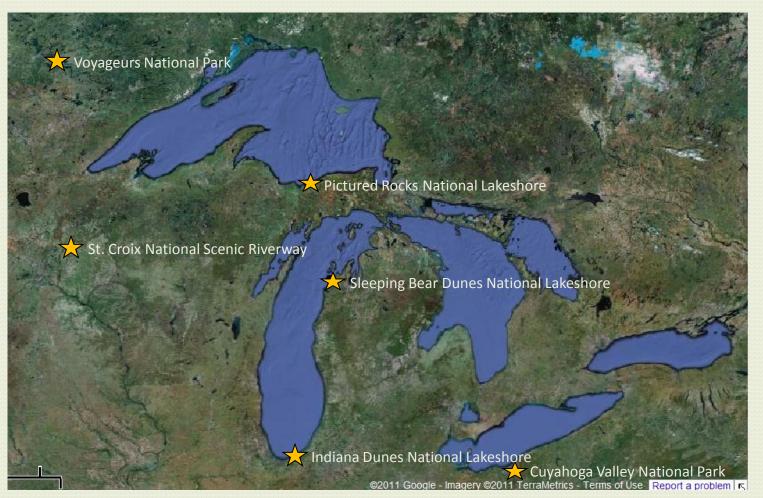
### Hybridization is attributable to the westward expansion of the narrow-leaf cattail




# ... but does every cattail invasion involve hybrids, and how can we know for certain?


TABLE 3. Distribution frequency of SSR alleles in clones that were identified as either *Typha latifolia* (L) or *Typha angustifolia* (A) using RAPD markers. Shading indicates fragment sizes that were designated as *T. latifolia* (pink, underlined), *T. angustifolia* (blue), or uncertain (no shading); boldface with green shading indicates exceptions for these designations. Collection sites are shown in Tables 1 and 2.

|                        | TA                                                                 | 3 loci                               | 15                     | TA 5 locus                                                         |                                                       |                                                                                                                                       | TA 7 locus                                                                       |                                         |                                       | TA 8 locus                                           |                                                     |                                    | TA 16 locus                                                        |                                   |                                  | TA 20 locus                                |                    |                         | TA 21 locus  |         |         |
|------------------------|--------------------------------------------------------------------|--------------------------------------|------------------------|--------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------------------|-----------------------------------------------------|------------------------------------|--------------------------------------------------------------------|-----------------------------------|----------------------------------|--------------------------------------------|--------------------|-------------------------|--------------|---------|---------|
|                        | Allele                                                             |                                      |                        | Allele                                                             |                                                       |                                                                                                                                       | Allele                                                                           |                                         |                                       | Allele                                               |                                                     |                                    | Allele                                                             |                                   |                                  | Allele                                     |                    | Allele                  |              |         |         |
|                        | Size<br>(bp)                                                       | L                                    | А                      | Size<br>(bp)                                                       | L                                                     | А                                                                                                                                     | Size<br>(bp)                                                                     | L                                       | А                                     | Size<br>(bp)                                         | L                                                   | А                                  | Size<br>(bp)                                                       | L                                 | A                                | Size<br>(bp)                               | L                  | А                       | Size<br>(bp) | L       | А       |
|                        | <u>174</u><br><u>176</u><br><u>178</u><br><u>180</u><br>210<br>216 | 40<br>57<br>9<br>18<br><b>6</b><br>0 | 0<br>0<br>1<br>56<br>9 | 276<br>278<br>280<br>282<br>286<br>288<br>290<br>292<br>292<br>294 | 4<br>26<br>80<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $     \begin{array}{c}       0 \\       0 \\       0 \\       14 \\       31 \\       8 \\       1 \\       26 \\       \end{array} $ | <u>176</u><br>182<br>186<br><u>188</u><br><u>190</u><br><u>192</u><br>196<br>210 | 5<br>4<br>3<br>10<br>108<br>6<br>0<br>0 | 0<br>2<br>6<br>0<br>0<br>0<br>68<br>8 | 267<br>269<br>271<br>273<br>275<br>287<br>289<br>291 | 18<br>25<br>85<br>0<br><b>2</b><br>0<br>0<br>0<br>0 | 0<br>0<br>2<br>44<br>9<br>19<br>12 | <u>167</u><br><u>177</u><br><u>179</u><br>181<br>191<br>193<br>195 | 15<br>2<br>80<br>1<br>0<br>0<br>0 | 0<br>0<br>1<br>5<br>1<br>70<br>9 | <u>91</u><br><u>93</u><br>99<br>101<br>103 | 84<br>52<br>0<br>0 | 0<br>2<br>15<br>65<br>2 | 278<br>280   | 26<br>0 | 0<br>14 |
| Total no. of<br>clones |                                                                    | 65                                   | 33                     |                                                                    | 56                                                    | 40                                                                                                                                    |                                                                                  | 68                                      | 42                                    |                                                      | 65                                                  | 42                                 |                                                                    | 49                                | 43                               |                                            | 68                 | 42                      |              | 13      | 7       |
| Group 1<br>Group 2     |                                                                    | 52<br>13                             | 26<br>7                |                                                                    | 43<br>13                                              | 33<br>7                                                                                                                               |                                                                                  | 55<br>13                                | 35<br>7                               |                                                      | 52<br>13                                            | 35<br>7                            |                                                                    | 36<br>13                          | 36<br>7                          |                                            | 55<br>13           | 35<br>7                 |              | 0<br>13 | 0<br>7  |


#### Is hybridization between narrow-leaf and broadleaf cattail occurring on the Atlantic Coast?



# Yes, but pure stands of narrow-leaf cattail are not uncommon



# Is hybridization between narrow-leaf and broad-leaf cattail occurring in the Great Lakes region?



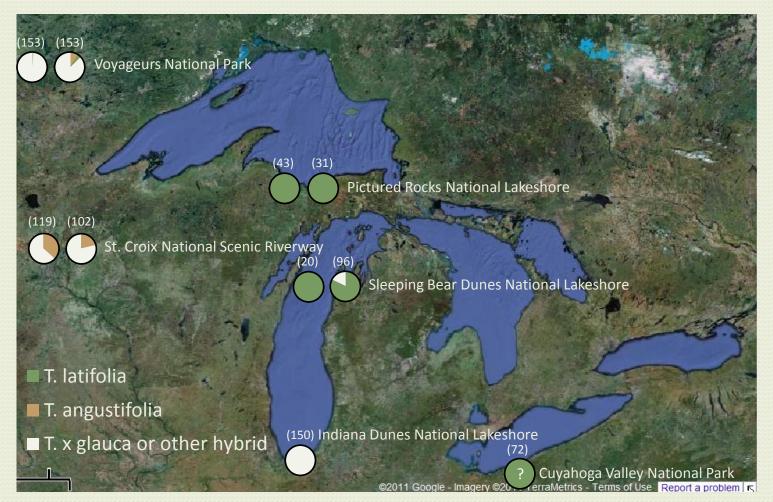
#### ... where cattails are a particular nuisance

VOYA: Large Lake Margin

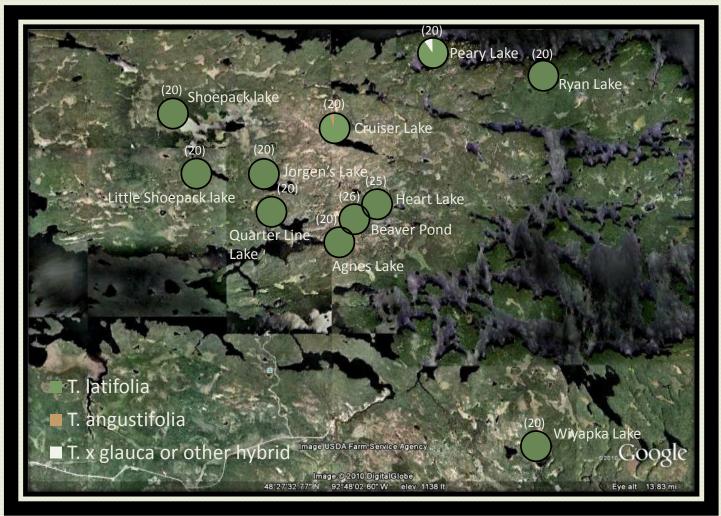
SACN: Small Lake Margin

PIRO: Sweet Gale Swamp

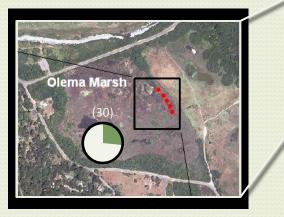



SLBE: Beaver Impoundment

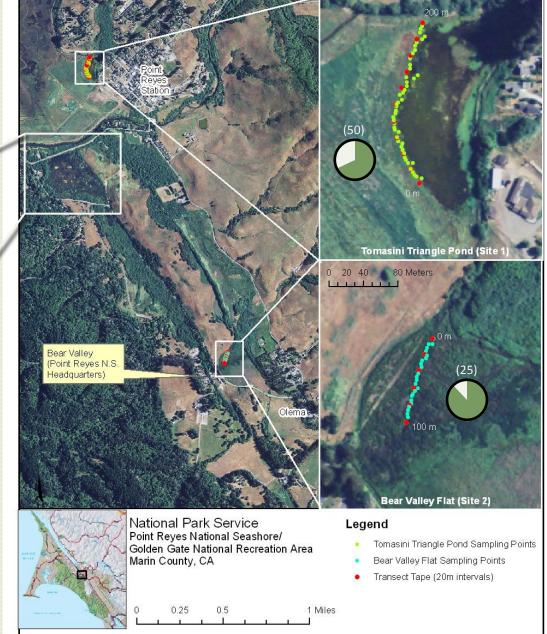
INDU: Bog


CUVA: Floodplain Fen

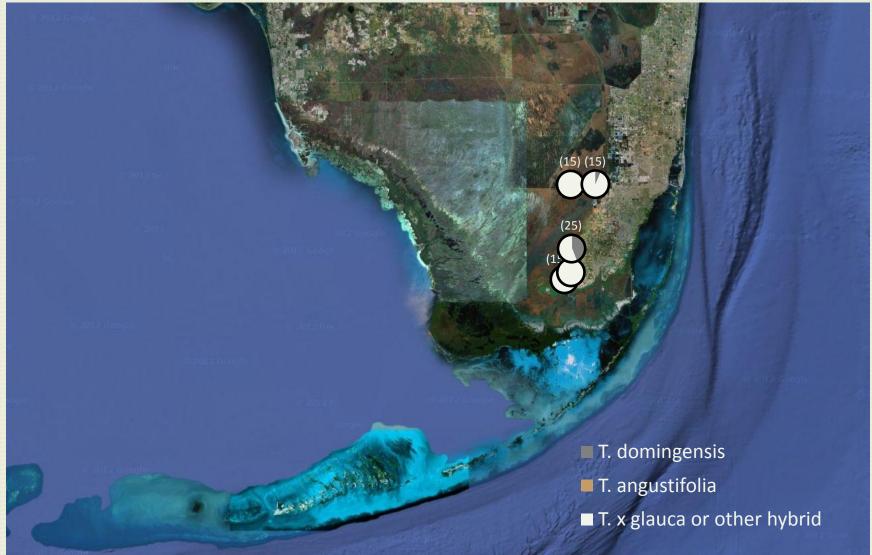



#### Yes, but the migrating hybrid front has thus far bypassed the central Great Lakes... or has it?




# ... and native broad-leaf cattail persists where motorized traffic is limited or restricted




Is hybridization between narrow-leaf and broad-leaf cattail occurring in California?

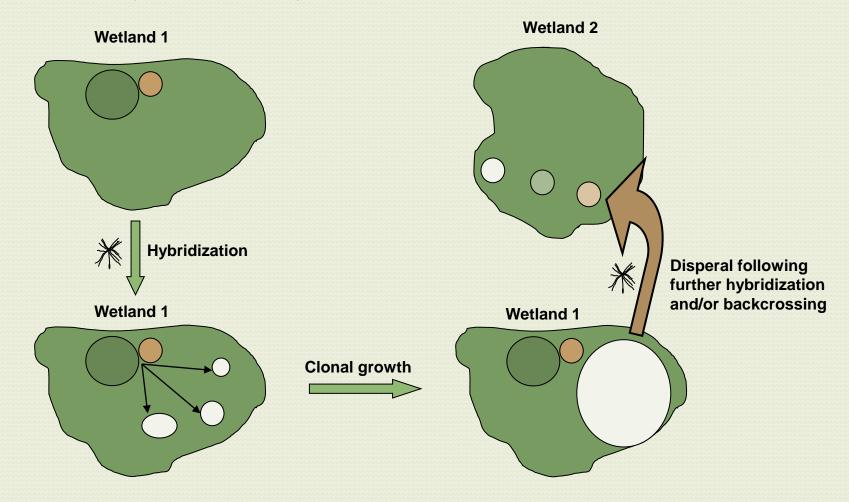


Cattail (Typha spp.) Genetic Analysis Sampling - March 2011 Giacomini Wetland Restoration Project



# Is hybridization between narrow-leaf and southern cattail occurring in Florida?

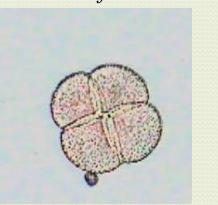



### Patterns of Cattail Hybridization

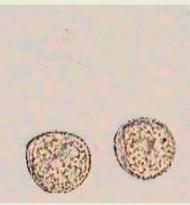
Hybridization between North American cattails is widespread

Wind Kir wether and

- Hybrids are fertile, creating the potential for gene introgression
- Hybrids are especially dominant (and aggressive) in the western Great Lakes region
- Portions of the central Great Lakes region have yet to be colonized by hybrids
- Hybridization and introgression are also apparent on the West Coast
- . . . And, tentatively, on the Gulf Coast


### Due to the fertility of hybrids, the invasion dynamics of hybrid cattails are complex




### **Future Directions**

- Develop additional species-diagnostic microsatellite markers for enhanced detection of introgression
- Confirm the reliability of pollen as a low-cost indicator of cattail hybridization

T. latifolia



#### T. angustifolia



T. x glauca



# Modeling the spread of non-native cattail by "resistant kernel analysis"

- Sample cattail pollen from the coast of New England, fanning out to encompass the entire western Great Lakes
- Include lightly populated areas and isolated wetlands in addition to urban areas and disturbance wetlands
- Correlate multiple anthropogenic and environmental features with presence/absence of nonnative cattail

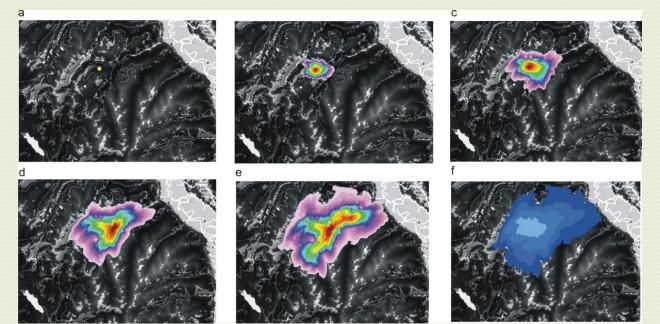



Figure courtesy of S. Cushman